Ir arriba
Información del artículo

Dynamic Modeling Under Temperature Variations for Sustainable Air Quality Solutions: PM2.5 and Negative Ion Interactions

P.M. Ortiz-Grisales, L. Gutiérrez-León, E. Duque-Grisales, C.D. Zuluaga-Ríos

Sustainability Vol. 17, nº. 1, pp. 70-1 - 70-18

Resumen:

Air pollution caused by fine particles known as PM2.5 is a significant health concern worldwide, contributing to illnesses like asthma, heart disease, and lung cancer. To address this issue, this study focused on improving air purification systems using negative ions, which can attach to these harmful particles and help remove them from the air. This paper developed a novel mathematical model based on linear differential equations to study how PM2.5 particles interact with negative ions, making it easier to design more effective purification systems. The proposed model was validated in a small, controlled space, using common urban pollutants such as cigarette smoke, incense, coal, and gasoline. These tests were conducted at different temperatures and under two levels of ion generation. The results showed that the system could remove over 99%99% of PM2.5 particles in five minutes when temperatures were low or moderate. However, at higher temperatures, the system’s performance dropped significantly. This research goes beyond earlier studies by examining how temperature affects the process, which had not been fully explored before. Furthermore, this approach aligns with global sustainability goals by promoting public health, reducing healthcare costs, and providing scalable solutions for sustainable urban living.


Resumen divulgativo:

La contaminación por PM2.5 afecta gravemente la salud global. Este estudio utilizó un modelo novedoso para optimizar la purificación de aire basada en iones negativos, eliminando el 99% de PM2.5 en cinco minutos a temperaturas moderadas. Destaca el papel de la temperatura, apoyando la sostenibilidad y la salud pública.


Palabras Clave: negative ions; PM2.5; air purification; environmental sustainability; air quality; environmental impacts; dynamic modeling; electrostatic recombination; mass conservation; deterministic modeling; ionization efficiency; temperature variation


Índice de impacto JCR y cuartil WoS: 3,300 - Q2 (2023)

Referencia DOI: DOI icon https://doi.org/10.3390/su17010070

Publicado en papel: Enero 2025.

Publicado on-line: Diciembre 2024.



Cita:
P.M. Ortiz-Grisales, L. Gutiérrez-León, E. Duque-Grisales, C.D. Zuluaga-Ríos, Dynamic Modeling Under Temperature Variations for Sustainable Air Quality Solutions: PM2.5 and Negative Ion Interactions. Sustainability. Vol. 17, nº. 1, pp. 70-1 - 70-18, Enero 2025. [Online: Diciembre 2024]


    Líneas de investigación:
  • Modelos matemáticos e Inteligencia Artificial aplicados al sector de la salud